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A b s t r a c t  

The method of tree pruning is employed to obtain generating functions for 
lattice statistics on Bethe lattices. It is shown that tree pruning significantly simpli- 
fies the evaluation of the generating function for the number of ways of placing k 
disjoint dimers on a Bethe lattice. Analytical expressions are derived for several 
Bethe lattices. An iterative algorithm is outlined for obtaining generating functions 
for placing dimers on a Bethe lattice of any valence a and with length n. It is 
further shown that the method could also be applied to weighted or anisotropic 
lattices. 

1. I n t r o d u c t i o n  

One of the interesting problems in statistical physics [1] is enumerating the 
number of ways of placing k dimers on a lattice of N points. The problem is not only 
mathematically interesting but it has several physical and chemical applications such as 
the evaluation of the grand canonical partition function of a lattice gas, the partition 
function of a system of interacting ferromagnets (the Ising problem), the kinetics and 
thermodynamics of adsorption of diatomics on metal surfaces and in the enumeration 
of  resonance structures of aromatic compounds. While the complete covering problem 
(dimer coverings) has been solved exactly for two-dimensional lattices, an analytical 
solution (or a generating function) for the number of ways of placing k dimers on a 
lattice containing N points (where k «. N/2) is not always available for all lattices. 
The dimer covering problem (k = N/2) can be solved either by Pfaffian expansion of 
the associated connectivity matrix (adjacency matrix), or by the transfer matrix 
approach of Onsager [2]. The matching polynomial of  a graph defined by Hosoya [3] 
generates the number of ways of placing k disjoint dimers on a lattice or graph. The 
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coefficients in these polynomials generate the number of ways of placing a given 
number of dimers (valence bond structures) on the associated molecular graphs. 
Motoyama and Hosoya [4] have defined and used king polynomials, which are 
generating functions for the number of ways of placing a given number of non-taking 
kings on a chess board. Hosoya [5] has also shown the use of characteristic poly- 
nomials in physicochemical applications. Hosoya and Ohkami [6] have obtained 
recursion relations for matching polynomials and characteristic polynomials of certain 
benzenoid hydrocarbons. Gutman and coworkers [7,8] have earlier considered 
development of methods to compute matching polynomials. 

Some years ago, Fisher and Essam [9] showed the use of Bethe lattices 
for percolation and cluster size problems. While Bethe lattices are not tme lattices 
in the sense that they are topological absträctions of true lattices, exact analytical 
solutions can, however, be obtained for percolation and cluster size problems on these 
lattices. Since this development, Bethe lattices have been used in several applications. 
Cayley trees, which are used in a number of problems in statistical mechanics, are 
special cases of Bethe lattices (trivalent). In this paper, we show that exact analytical 
solutions for lattice statistics on Bethe lattices are possible using the method of tree 
pruning for the characteristic polynomials of  trees developed by the present author 
[10] in an earlier publication. While generating functions for lattice statistics on Bethe 
lattices could be obtained using other methods [11], our method is applicable not 
only to isotropic lattices, but also weighted (edge-weighted) lattices or non-isotropic 
lattices. The present method is also applicable to what we call generalized Bethe 
lattices, for which the valences need not be the same for different lengths from the 
cëntral vertex. We obtain analytical expressions for the generating functions for 
placing k dimers on Bethe or any tree lattices. In recent years, the development of 
methods for characteristic polynomials, matching polynomials, king polynomials, 
and their applications, has been the topic of many investigations [ 1 2 - 2 9 ] .  Section 2 
briefly reviews the basic elements of lattice statistics and its connection to matching 
and characteristic polynomials. Section 3 describes the tree pruning method for Bethe 
lattices. 

2. La t t i ce  stat is t ics ,  m a t c h i n g  p o l y n o m i a l s  and  charac te r i s t i c  
p o l y n o m i a l s  

First, we start with a brief review of the method oflattice statistics. For more 
details, the reader is referred to Kilpatrick [30]. Consider the grand canonical partition 
function of a lattice gas, which is defined by 

= Z Z ~"~(N, E, V)  e -(3E e -aN  , 
N E 
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where g2 is the number of quantum states for N molecules in volume V and energy E. 
One can express the above partition function in terms of the activity z = e -~ as 

with 

= 1 -t- Z 1  z ,-I- Z 2 z 2 + Z 3 z 3 -/- . . . 

Z N = Z(N, 13, V) = ~_~ YZ(N, E, V) e -nE. 
E 

One can write In E as 

oo 

ln~, = Z Vg/z j ,  
/=1 

where 

v ~  N - 

( _  1)N- 1 

N 

Z1 1 0 0 . . . .  0 

2Z2 Z1 1 0 . . . .  0 

3Za Z2 Z 1  1 0 . . .  0 

N Z  n Zn_ , Zn_ 2 . . . .  ZI  

For lattice gases, Z n is simply 

z , ,= Z ~ ( n , k ) x  k, x = e -~«, 
k 

where g2(n, k) is the number of ways of placing n particles such that they constitute 
k disjoint dimers on a lattice of N points. Thus, in order to compute gN's, one needs 
to obtain Z n's for various n's. 

We now show the relation between the polynomial Z n and the matching 
polynomials and characteristic polynomials of graphs. The matching polynomial 
M G (x) of a graph G is defined [3] as 

t?/ 

Me(x) = Z 
k = O  

( _  1)xP(G, k)x  N-  2k, 

where P(G, k) is the number of  ways of  placing k disjoint dimers on a graph. It is 
closely related to the Z-counting polynomial [3] 

m 

QG(X) = ~ P ( O , k ) x  k. 
k = 0  
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The characteristic polynomial of  a graph G is defined as 

PG (x) = det(A - xI), 

where A is the adjacency matrix of  the graph. The adjacency matrix element Aii is one 
if the vertices i and / are connected; otherwise, it is zero. For any tree (a connected 
graph with no cycles), Pc (x) and M G (x) are identical. Thus, Pc (x), the characteristic 
polynomial of a tree, is identical with the Z n polynomial except for the signs of  the 
coefficients, if the associated lattice is a tree. 

Bethe lattices are trees. Thus, the characteristic polynomials of these lattices 
are generating functions for the number of ways of placing k dimers on a lattice of  
N points. In the next section, we show the use of  the tree pruning method for the 
characteristic polynomials of  several Bethe lattices. 

3. T ree  p run ing  m e t h o d  fo r  B e t h e  la t t ices  

3.1. PRUNING BETHE LATTICES 

The present author [10] developed an iterative tree pruning method for 
characteristic polynomials of  trees. Since Bethe lattices are trees, this method should 
be especially of  use in obtaining the characteristic polynomials or generating functions 
for Bethe lattices. We show here that the tree pruning method leads to analytical 
solutions for several Bethe lattices and, in general, provides an iterative algorithrn for 
obtaining the characteristic polynomial of any Bethe lattice. The method is also 
applicable for non-isotropic lattices. 

A Bethe latüce of  valence o and length n is defined simply as a tree in which 
each non-terminal vertex has o neighbors (of  valency er) and there are n bonds from 
the central vertex to any terminal vertex. To illustrate this, fig. 1 shows a Bethe 
lattice of  valence 4 and n = 3. Cayley trees are examples of Bethe lattices with valence 
3. Also, trees with a = 2 are paths oflength n. Since Bethe lattices, by definition, are 
trees, they can be pruned into smaller trees and fragments. To illustrate, consider the 
Bethe lattice in fig. 1. In this lattiae the terminal vertices (i.e. vertices of  valence 1) can 
be considered as leaves. Consequently, in this particular lattice three leaves are attached 
to the same vertex and one can call this unit a branch. There are 12 such terminal 
branches for the Bethe lattice shown in fig. 1. Supposing one pruned the Bethe lattice 
in fig. 1 at these branch points, one would obtain the smaller tree QI and a set of 
branches with a representative shown in the box with label Tl in fig. 2. The pmned 
tree Q1 can be ca~ed a quotient tree obtained in the first step ofpruning. Equivalently, 
one may attach to the terrninal vertices of  Q~ the closed vertex (root), a copy of  T~, 
to synthesize the unpmned tree in fig. 1. This graph product was formulated by the 
present author [31] in the context of  isomer enumeration, and it was referred to as 
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( 

Fig. 1. A Bethe lattice with valence 
o = 4 and length n = 3. 

Tl 

QI 

Fig. 2. The quotient tree Q~ and a 
representative fragment T l obtained 
by pruning the Bethe lattice in fig. 1 
at the 12 terminal branch points. 

1"2 
Q2 

Fig. 3. The quotient tree Q2 and the 
type T~ generated by pruning the 
lattice in fig. 2. 
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a root-to-root product. The tree pruning method can be applied again to simplify 
this Bethe lattice further. When one prunes the Bethe lattice shown in fig. 2 at the 
four terminal branches, one obtains the quotient tree Q2 and the "type" 7"2 shown 
in fig. 3. This tree pruning method reduces a given Bethe lattice into a much smaller 
lattice and fragments. 

3.2.  T R E E  P R U N I N G  AND C H A R A C T E R I S T I C  P O L Y N O M I A L S  

In this section, we show that analytical expressions can be obtained for the 
characteristic polynomials of Bethe lattices using the tree pruning method described 
in subsect. 3.1. 

The present author [10] showed that the characteristic polynomial of a tree 
can be obtained in terms of the characteristic polynomials of the pruned tree and the 
fragment resulting in the process of pmning. We now describe this method in order 
to apply it to Bethe lattices. Consider the tree in fig. 2 as an example. Our objective 
is, say, to obtain the characteristic polynomial of this tree which, when pruned, results 
in the quotient tree Q2 and the type T2 in fig. 3. Let the characteristic polynomial of 
the fragment T2 be H2, and let h n denote the characteristic polynomial of a fragment 
containing n vertices. It can be easily seen that h n = X n - ( n -  1)X n-2  Thus, 
H2 = h4  = )t 4 - 3~, 2 . Let H; be the characteristic polynomial of the fragment type 
T2 with the root (closed vertex) removed. In this case, when the root is deleted from 
Tz it results in a disconnected graph containing three vertices. Consequently, H; is 
X 3 for this case. Let the closed vertices (roots or branch points) of Q2 constitute the 
set I"1, and let qii be the adjacency matrix of Q2 (i.e. qi] = 1 if i and ] are connected 
and 0 otherwise). Define a new adjacency matrix for Qz as follows: 

t l  

H2 if i = /  and i E  Y1 

X if i = j  and iq~ Y1 

- H ; q 6  if i ¢ /  and i E  Y1 

- qii if i ¢ ] and i ~ Y1 

In this example, the matrix A thus constructed is shown below: 

A = 

X - 1  - 1  - 1  - 1  

- tt~ 1-12 0 0 0 

- H~ 0 H2 0 0 

- H~ 0 0 H2 0 

- H~ 0 0 0 Hz 
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The determinant of A is simply the characteristic polynomial of  the tree in fig. 2 
(i.e. the original unpruned tree). Of course, because of the simple nature of the matfix 
A, the determinant of  A is easily obtained as 

3 det(A) = XH24 - 4 H ; H  2 . 

Substituting the expression for H2 and H; in the above expression, one obtalns the 
characteristic polynomial of  the tree in fig. 2 as 

~k. ()k 4 -  3•2) 4 -  4()k 3)()k 4 -  3)@) 3 

= )tl "/_ 16~k ls + 90~, 1 3 -  216?k 11 + 189;k 9. 

The significance and use of the above genrating function is that the absolute value of 
the coefficient of  X 17- k in the above expression generates the number of ways of 
placing k /2  disjoint dimers on the Bethe lattice in fig. 2. For example, in fig. 2 there 
are 16 ways of placing one dimer, 90 ways of placing two disjoint dimers, and 216 ways 
of placing three dimers. Note that no more than four disjoint dimers can be placed 
on the lattice in fig. 2 since the coefficient of all terms with powers smaller than nine 
is zero. This result can easily be verified by actually attempting to place five dimers 
on the lattice in fig. 2. 

This method of tree pruning can be iterated further. To illustrate, consider the 
Bethe lattice in fig. 1. In the first step, one generates the quotient tree Q1 and the 
fragment type 7"1. The characteristic polynomial of 7"1 is H1 = h , .  The characteristic 
polynomial H'x -- X 3. Now the characteristic polynomial of T2 is modified since it 
carries an additional branch. The characteristic polynomials H2 and H ;  are given by: 

H2 XH13 , 2. , 3 = - 3 H  1 H 1 , H z = H 1 . 

The characteristic polynomial of the tree in fig. 1 is now the determinant of the 
matrix A,  with H2 and H; replaced by the above expressions. 

3 Char(X) = XH 4 - 4 H ; H  2 

= X(XH~ - 3H' 1H12) 4 -  4(H13)(XH13 - 3H; H123). 

Substituting H1 = ?4 _ 3 X 2 and H'I = X 3 in the above expression one obtalns the 
characteristic polynomial of  the lattice in fig. 1. The fmal expression is one of the 
expressions in table 2 (o = 4, n = 3). 
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3.3. ITERATIVE METHOD OF PRUNING ANY BETHE LATTICE 

Consider a Bethe lattice of  valence o and length n. Let Qi be the quotient 
tree generated in the / th step of  pruning and T/be  the corresponding fragment type. 
Let  H i be the characteristic polynomial of  the type ivi and H;  be the polynomial 
obtained after deleting the root (branch point) in 7]/. H i and H[ can be obtained 
recursively. At  the n th  step of  pruning (where n is the length of  the lattice), one 
obtains a simple tree whose polynomial can be obtained easily, and thus the poly- 
nomial o f  the original lattice we started with can be constructed recursively. For  a 
lattice of  valence o at the first iteration, the type /'1 would contain one branch point 
and (o - 1) open vertices. Thus, the characteristic polynomial of  Tl, H~, is 

HI = h a = h a -  ( o -  1)~ a - 2 ,  

H'I = h a -  1 

At the second iteration, H2 and H~ are expressed in terms of  H1 and Htl as 

H2 = XH~ - 1 _ (er - 1)H'I H~ r - 2 

H~ = H~ r-' 

(Note that H~ is the polynomial obtained after deleting the root in T2 .) Simflarly, 
H3 and H ;  are expressed in terms of  H2 and H;  as 

H3 = )~ H~ r - 1 _ (o - 1) H;  H~ r - 2, 

Consequently, for any Bethe lättice the expressions at the ith iteration are related 

to the ones at the (i - 1)th iteration as 

H a - 2 Hi = XH°-i-ll _ ( a -  1)H/_ 1 i -  1 ' 

HI = H. a -  1 
t t - 1  " 

Finally, at the (n - 1)th iteration the charachertistic polynomial of  T n_ 1, Hn-  1, is 

: k H ° - I  _ ( o -  1 )H'  n H a - :  
H - 1  n - 2  - 2  t l - 2  ~ 

H t = H(r-1 
n - 1  n - 2  " 
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Since n is the length of the lattice, the quotient tree Qn - ~ at the (n - 1)th iteration 
is a simple tree, and thus the characteristic polynomial of  the lattice we started with 
can be obtained in terms of  the determinant of  the adjacency matrix of Qn expressed 
in terms o f H  n . This adjacency matrix is defined as 

A ° .  -~. 
t !  

Hn_ 1 if i = ]  and i E  Y - x  

X if i = ]  and i q 2 Y _ l  
» 

- H'n_lqi](n- 1) if i g: ] and i E Yn_l 

(n-z)  if  i C  j and i ~  Y - x  
- qi] 

(n- 1) is the adjacency matrix of Qn-  1 where qi] 
points) in Qn-a (there are a -  1 vertices in Yn-l)" If 
carries the label 1, then the matrix A takes the form: 

and Yn is the set of  roots (branch 
the open vertex of Qn-1 

A _ 

- - X  - 1  - 1  . . . . . . . . . . . . . .  - 1  

- H ' n _ l  H - 1  0 . . . . . . . . . . . . . .  0 

- H  t 0 H 0 
n - 1  n - 1  . . . . . . . . . . . .  

0 0 H . . . .  0 
n - 1  

- H '  0 . . . .  0 . . . .  0 . . . . .  0 H 
m n - I  " " n - l ~  

The determinant of  A can be easily seen to be 

H O - 1  XH~_, - oH'_, ù_~ 

The above expression is simply the characteristic polynomial of  the lattice we started 
with. Note that the expression for H n is obtained recursively, with H~ defined in 
terms of X and a. One can easily see that a Bethe lattice of valence a with length n 
contains v vertices, where v is given by 

v = l +  
o . { ( o -  1) n -  1} 

o - 2  

Hence, the leading power in the characteristic polynomial thus obtained would be X o. 
The absolute value of the coefficient of  )t ° -  k (k being even) gives the number ofways 
k/2 disjoining dimers can be placed on a Bethe lattice ofvalence o and length n. 
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Table 1 

The characteristic polynomials of Bethe lattices with n = 2" 

a Charactcristic polynomial 

x s - 4 X  3 + 3 h  

~~o _ 9 x s  + 2 4 X «  _ 20x4 

B7 _ 16~~s + 90B3 _ 216xll + 189ho 

~ 2 6  _ 25~74 + 240~2~ _ 1120X2o + 2560X18 _ 2304k16 

7d 7 -- 36?, 3s + 525~ 33 -- 4000X 3~ + 16 875~? 9 

-- 37 500k 27 + 34 375k 2s 

~t 
o = 2 is a path. a = 4 with n = 2 is shown in fig. 2. 

We now illustrate the use o f  the recursive relations thus obtained for several 

Bethe lattices. Consider any Bethe lattice o f  valence a and n = 2. The characteristic 

polynomial o f  such a lattice can be obtained as a function o f  o. In the first step of  

pmning,  we obtain the following expressions: 

H~= ho= X ° - ( a -  1)X °- : ,  

H; = V -  

Thus, the characteristic polynomial of  this lattice is given by 

XH~ - oH~~H~ -1 : X(X ° -  ( a -  1 ) X ° - 2 )  a -  a X a - l ( X  0 -  ( o -  1 ) X ~ - : )  ° - 1  

The above expression, on simplification, yields 

X (a-1)2 . ( X  2 -  o + l )  ° - 1  . ( X 2 -  2 0 + 1 ) .  

Thus, an analytical expression was obtained for the characteristic polynomial  o f  a 

Bethe lattice o f  any valence a and n = 2. In table 1, we show the characteristic poly- 

nomial o f  a Bethe lattice with a = 3, 4, 5 and 6 and n = 2. 

Next,  we consider Bethe lattices with valence a and n = 3. The analytical 

expression for this case is much more complicated, as one can expect. In the first 

iteration, H1 and Htl are the same as in the earlier example. The expressions for H2 
and H~ are: 
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Table 2 

The characteristic polynomials of Bethe lattices with n = 3"  

o Characteristic polynomial 

X 7 - 6 x  s + lOx  3 - 4 x  

X22 _ 21~2o  + 1 8 0 x  a8 _ 8 1 6 h  ~« + 2112~) « 

_ 3120~. ~2 + 2432x 1° _ 768X 8 

X s3 - 52x sl + 1224,  «9 - 17 280h «7 

+.163 350~. «» - 1 092 528X «3 + 5 312 700 ,  41 

- 19 123 128k a9 + 50 709 969x 3~ 

- 98 021 340k 3s + 134 238 060X 33 

- 123 294 312k 31 + 68 024 4 4 8 ~  29 

- 17 006 112~ 27 

o = 4 with n = 3 is shown in fig. 1. 

H2 = XH~ - 1 -  ( o -  1)H'IHf -2 

= X .  (X ° -  ( e r -  1 ) X ° - 2 )  0 - 1 -  X a - 1  

H ;  = ()t ° -  ( a -  1 ) X a - 2 )  0 - 1  

The  character is t ic  po lynomia l  o f  the lat t ice is given by  

XH~ - eH;H~-I 

• ( ? t  ° -  ( a -  1 )  X ° - 2 ) ° - 2 ,  

X (°-1)~ • (X 2 -  o + l )  ° ~ - Œ ° .  (X 2 -  2 o + 2 )  ° - 1  • (X 4 -  3 o X  2 + 2 x 2 + o  2 -  o). 

I n  table 2,  we show the result ing expressions for  a = 3 and 4. In  table 3,  we show the 

express ion ob ta ined  for  o = 5 and n = 3. As one can see f r o m  these tables, the  co- 

efficients o f  terms wi th  odd  power  vanish in the po lynomia l s  con ta in ing  even terms 

and vice versa. This behavior  is expec t ed  for  Bethe  lattices.  The  coef f ic ien ts  rise 

exponen t i a l ly  and then  fall in value. Fo r  Bethe  latt ices,  the coeff ic ients  s tar t  to  vanish 

af ter  a par t icular  te rm,  indicat ing tha t  the lat t ice can n o t  be covered  b y  m o r e  than  a 

cer ta in  n u m b e r  o f  disjoining dimers for  Bethe  latt ices.  I t  can  be shown tha t  the maxi-  

m u m  n u m b e r  o f  disjoint  dimers tha t  can be placed on  any Bethe  lat t ice o f  valence o 

and length n is given by  

In  the above expression,  one can subs t i tu te  the appropr ia te  expressions for  H2 and 

H ; ,  This,  on  s implif icat ion,  results in 
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Table 3 

The characteristic polynomials of a Bethe lattice with cr = 5 and n = 3 

Term Coefficient 

Mo6 1 
X 1 ° 4  - 105 

X 1°2 5200 

?d °° - 161 600 
X 98 3 536 640 

X 9« - 57 978 880 

X ~4 739 307 520 

X 9~ - 7 514 603 520 
X 9° 61 892 526 080 
~88 - 417 575 075 840 

X 86 2 323 255 394 304 

X sc - 10 693 902 336 000 

X 8~ 40 729 795 624 960 
X 8° - 127 977 274 736 640 
Z. 78 329 618 607 308 800 

~~7 - 688 565 935 669 248 
X ~4 1 147 915 909 201 920 

X œ2 - 1 490 546 925 240 320 
~7o 1 452 042 543 431 680 
X 68 - 997 806 802 206 720 

X 6~ 431 008 558 088 192 
X 64 - 87 960 930 222 080 

( o -  1) n -  ( o -  1) 
1 + o .  i f n i s o d d  

( o -  1) 2 - 1 

o .  ( ( a - 1 )  n -  1)1(o 2 -  1) i f n i s e v e n .  

I t  can be easily seen tha t  the coef f ic ien t  o f  X v -  : (where v is the n u m b e r  of  vertices in 

the Bethe lat t ice)  is always v - 1, since this gives the n u m b e r  o f w a y s  o f c o v e r i n g  this 

la t t ice  wi th  one d imer  and  hence  should  equal  the n u m b e r  o f  bonds .  Fu r the r ,  the signs 

o f  a l t e m a n t  te rms change,  which  is in c o n f o r m i t y  w i th  the behav ior  o f  the coeff ic ients  

o f  character is t ic  p o l y n o m i a l s  o f  trees. Note  tha t  i t  is imposs ib le  to  cover  the ent i re  

la t t ice  wi th  dimers ,  since the c o n s t a n t  coef f ic ien t  o f  the character is t ic  p o l y n o m i a l  o f  

a Bethe lat t ice is always zero. Thus ,  the Pfaf f ian  of  the Bethe lat t ice is always zero. 

The  Pfaff ian  o f a  lat t ice is de f ined  in  Mont ro l l  [1 ] .  
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w~ 
0 T 

Fig. 4. A non-isotropic Bethe lattice. 
Q and T are the quotient graph and the 
fragment resulting from tree pruning. 
(Note that the weights wt and w2 need 
not be equal.) 

The tree pmning method described earlier is also applicable to weighted or 
non-isotropic lattices. For example, consider the weighted lattice graph shown in 
fig. 4. The weights wl and w2 need not be equal (non-isotropic lattice). In this 
figure, we also show the quotient tree and the fragments which result in the process 
of pruning. The characteristic polynomial of  the fragment (in the box) is given by 

h 3 = X 3 -  2Xw~. 

The characteristic polynomial of the same fragment with the root deleted is given by 

h~ = X 2 . 

The characteristic polynomial of  the quoüent tree obtained using the tree pruning 
algorithm is given by 

2 ! Xh~ - 314,1 h3h a . 

When one substitutes the expressions for h3 and h~ for the above weighted lattice 
one obtains the characteristic polynomial of  the latüce as 

k 1 ° -  XS(6w~ + 3wl)  + 12X'(w 4 + w 1 w~) - X4(8w 6 + 12w 1 w~). 

The above example illustrates how one could obtain generating functions for the 
lattice statistics of non-isotropic lattices. 
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