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Abstract

The method of tree pruning is employed to obtain generating functions for
lattice statistics on Bethe lattices. It is shown that tree pruning significantly simpli-
fies the evaluation of the generating function for the number of ways of placing k
disjoint dimers on a Bethe lattice. Analytical expressions are derived for several
Bethe lattices. An iterative algorithm is outlined for obtaining generating functions
for placing dimers on a Bethe lattice of any valence o and with length n. It is
further shown that the method could also be applied to weighted or anisotropic
lattices.

1. Introduction

One of the interesting problems in statistical physics [1] is enumerating the
number of ways of placing k dimers on a lattice of N points. The problem is not only
mathematically interesting but it has several physical and chemical applications such as
the evaluation of the grand canonical partition function of a lattice gas, the partition
function of a system of interacting ferromagnets (the Ising problem), the kinetics and
thermodynamics of adsorption of diatomics on metal surfaces and in the enumeration
of resonance structures of aromatic compounds. While the complete covering problem
(dimer coverings) has been solved exactly for two-dimensional lattices, an analytical
solution (or a generating function) for the number of ways of placing k& dimers on a
lattice containing N points (where & < N/2) is not always available for all lattices.
The dimer covering problem (k = N/2) can be solved either by Pfaffian expansion of
the associated connectivity matrix (adjacency matrix), or by the transfer matrix
approach of Onsager [2]. The matching polynomial of a graph defined by Hosoya [3]
generates the number of ways of placing & disjoint dimers on a lattice or graph. The
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coefficients in these polynomials generate the number of ways of placing a given
number of dimers (valence bond structures) on the associated molecular graphs.
Motoyama and Hosoya [4] have defined and used king polynomials, which are
generating functions for the number of ways of placing a given number of non-taking
kings on a chess board. Hosoya [5] has also shown the use of characteristic poly-
nomials in physicochemical applications. Hosoya and Ohkami [6] have obtained
recursion relations for matching polynomials and characteristic polynomials of certain
benzenoid hydrocarbons. Gutman and coworkers [7,8] have earlier considered
development of methods to compute matching polynomials.

Some years ago, Fisher and Essam [9] showed the use of Bethe lattices
for percolation and cluster size problems. While Bethe lattices are not true lattices
in the sense that they are topological abstractions of true lattices, exact analytical
solutions can, however, be obtained for percolation and cluster size problems on these
lattices. Since this development, Bethe lattices have been used in several applications.
Cayley trees, which are used in a number of problems in statistical mechanics, are
special cases of Bethe lattices (trivalent). In this paper, we show that exact analytical
solutions for lattice statistics on Bethe lattices are possible using the method of tree
pruning for the characteristic polynomials of trees developed by the present author
[10] in an earlier publication. While generating functions for lattice statistics on Bethe
lattices could be obtained using other methods [11], our method is applicable not
only to isotropic lattices, but also weighted (edge-weighted) lattices or non-isotropic
lattices. The present method is also applicable to what we call generalized Bethe
lattices, for which the valences need not be the same for different lengths from the
central vertex. We obtain analytical expressions for the generating functions for
placing k& dimers on Bethe or any tree lattices. In recent years, the development of
methods for characteristic polynomials, matching polynomials, king polynomials,
and their applications, has been the topic of many investigations [12--29]. Section 2
briefly reviews the basic elements of lattice statistics and its connection to matching
and characteristic polynomials. Section 3 describes the tree pruning method for Bethe
lattices.

2. Lattice statistics, matching polynomials and characteristic
polynomials

First, we start with a brief review of the method of lattice statistics. For more
details, the reader is referred to Kilpatrick [30]. Consider the grand canonical partition
function of a lattice gas, which is defined by

=0 2 QN E V)ePEeaN
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where £2 is the number of quantum states for N molecules in volume V and energy E.

One can express the above partition function in terms of the activity z = e™® as

=1+ 72,242,282 +2Z323+ ...

with
Zy= Z(N,B, V) = 2 QN,E V)e PE
E

One can write In Z as

o0
Inz = Z Vg].zf,
j=1

where
Z, 1 0
(-pN-t 22, Z, 1
N 32, Z, Z, 10...0
Nz, Z,., Z,_, . Zy

For lattice gases, Z, is simply

zZ, = z Q(n. k)xk, —x = e Pe,
k

where $2(n, k) is the number of ways of placing n particles such that they constitute
k disjoint dimers on a lattice of N points. Thus, in order to compute g,,’s, one needs
to obtain Z,’s for various n’s.

We now show the relation between the polynomial Z, and the matching
polynomials and characteristic polynomials of graphs. The matching polynomial
Mg (x) of a graph G is defined [3] as

m
My (x) = 3 (—D*P(G, k)xN %,
k=0
where P(G, k) is the number of ways of placing k disjoint dimers on a graph. It is
closely related to the Z-counting polynomial [3]
m

0 (x) = 2. P(G.R)x*.

k=0
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The characteristic polynomial of a graph G is defined as
P, (x) = det(4 - xI),

where 4 is the adjacency matrix of the graph. The adjacency matrix element A;; is one
if the vertices i and j are connected; otherwise, it is zero. For any tree (a connected
graph with no cycles), Py (x) and M (x) are identical. Thus, P (x), the characteristic
polynomial of a tree, is identical with the Z, polynomial except for the signs of the
coefficients, if the associated lattice is a tree.

Bethe lattices are trees. Thus, the characteristic polynomials of these lattices
are generating functions for the number of ways of placing k& dimers on a lattice of
N points. In the next section, we show the use of the tree pruning method for the
characteristic polynomials of several Bethe lattices.

3. Tree pruning method for Bethe lattices

3.1 PRUNING BETHE LATTICES

The present author [10] developed an iterative tree pruning method for
characteristic polynomials of trees. Since Bethe lattices are trees, this method should
be especially of use in obtaining the characteristic polynomials or generating functions
for Bethe lattices. We show here that the tree pruning method leads to analytical
solutions for several Bethe lattices and, in general, provides an iterative algorithm for
obtaining the characteristic polynomial of any Bethe lattice. The method is also
applicable for non-isotropic lattices.

A Bethe lattice of valence o and length n is defined simply as a tree in which
each non-terminal vertex has ¢ neighbors (of valency o) and there are n bonds from
the central vertex to any terminal vertex. To illustrate this, fig. 1 shows a Bethe
lattice of valence 4 and n = 3. Cayley trees are examples of Bethe lattices with valence
3. Also, trees with o = 2 are paths of length n. Since Bethe lattices, by definition, are
trees, they can be pruned into smaller trees and fragments. To illustrate, consider the
Bethe lattice in fig. 1. In this lattice the terminal vertices (i.e. vertices of valence 1) can
be considered as leaves. Consequently, in this particular lattice three leaves are attached
to the same vertex and one can call this unit a branch. There are 12 such terminal
branches for the Bethe lattice shown in fig. 1. Supposing one pruned the Bethe lattice
in fig. 1 at these branch points, one would obtain the smaller tree Q; and a set of
branches with a representative shown in the box with label 7', in fig. 2. The pruned
tree Q; can be called a quotient tree obtained in the first step of pruning. Equivalently,
one may attach to the terminal vertices of Q; the closed vertex (root), a copy of T,
to synthesize the unpruned tree in fig. 1. This graph product was formulated by the
present author [31] in the context of isomer enumeration, and it was referred to as
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Fig. 1. A Bethe lattice with valence
o =4 and length n = 3.

Q

Fig. 2. The quotient tree Q, and a
representative fragment 7, obtained
by pruning the Bethe lattice in fig. 1
at the 12 terminal branch points.

, N
5 3

T2

Fig. 3. The quotient tree Q, and the
type T, generated by pruning the
lattice in fig. 2.
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a root-to-root product. The tree pruning method can be applied again to simplify
this Bethe lattice further. When one prunes the Bethe lattice shown in fig. 2 at the
four terminal branches, one obtains the quotient tree Q, and the “type” T, shown
in fig. 3. This tree pruning method reduces a given Bethe lattice into a much smaller
lattice and fragments.

3.2. TREE PRUNING AND CHARACTERISTIC POLYNOMIALS

In this section, we show that analytical expressions can be obtained for the
characteristic polynomials of Bethe lattices using the tree pruning method described
in subsect. 3.1.

The present author [10] showed that the characteristic polynomial of a tree
can be obtained in terms of the characteristic polynomials of the pruned tree and the
fragment resulting in the process of pruning. We now describe this method in order
to apply it to Bethe lattices. Consider the tree in fig. 2 as an example. Our objective
is, say, to obtain the characteristic polynomial of this tree which, when pruned, results
in the quotient tree Q, and the type 7, in fig. 3. Let the characteristic polynomial of
the fragment T, be H,, and let /2, denote the characteristic polynomial of a fragment
containing n vertices. It can be easily seen that h, = " — (n ~ 1)A"~?. Thus,
H, = hy = \* — 3\%. Let H, be the characteristic polynomial of the fragment type
T, with the root (closed vertex) removed. In this case, when the root is deleted from
T, it results in a disconnected graph containing three vertices. Consequently, Hj is
A? for this case. Let the closed vertices (roots or branch points) of Q, constitute the
set Y, and let q;; be the adjacency matrix of @, (i.e. q; = 1 if i and j are connected
and 0 otherwise). Define a new adjacency matrix for Q, as follows:

H, if i=j and i€ Y,
4 = A if i=j and €Y,
Yoo| —Hiq; if i#j and €Y,

~ 4y if i¥#j and ig¢ Y,

In this example, the matrix 4 thus constructed is shown below:

A -1 -1 -1 -1
-Hy, H, 0 0 0
A= | —H 0 H, 0

- H, 0 0 H,
- H, 0 0 0 H,
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The determinant of 4 is simply the characteristic polynomial of the tree in fig. 2
(i.e. the original unpruned tree). Of course, because of the simple nature of the matrix
A, the determinant of A is easily obtained as

det(4) = NH] - 4H H) .

Substituting the expression for A, and H, in the above expression, one obtains the
characteristic polynomial of the tree in fig. 2 as

A (A =302 = 4(A3) (W - 323
= M7 — 16A15 + 90013 — 216011 + 189)°.

The significance and use of the above genrating function is that the absolute value of
the coefficient of A7 ¥ in the above expression generates the number of ways of
placing k/2 disjoint dimers on the Bethe lattice in fig. 2. For example, in fig. 2 there
are 16 ways of placing one dimer, 90 ways of placing two disjoint dimers, and 216 ways
of placing three dimers. Note that no more than four disjoint dimers can be placed
on the lattice in fig. 2 since the coefficient of all terms with powers smaller than nine
is zero. This result can easily be verified by actually attempting to place five dimers
on the lattice in fig. 2.

This method of tree pruning can be iterated further. To illustrate, consider the
Bethe lattice in fig. 1. In the first step, one generates the quotient tree Q, and the
fragment type 7;. The characteristic polynomial of T} is H; = k4. The characteristic
polynomial H; = A\*. Now the characteristic polynomial of 7, is modified since it
carries an additional branch. The characteristic polynomials H, and H; are given by:

- 3_ap 2. gt o= g3
Hy=\H] - 3H H; H, = H.

The characteristic polynomial of the tree in fig. 1 is now the determinant of the
matrix 4, with H, and H; replaced by the above expressions.

= a4 — ay' g3
Char(N) = NH) — 4H, H]
- 3 _oapt g2y 3 3 _ ap! g2y\3
= MNH; = 3H H)" — 4(H]) (NH] - 3H H[)".
Substituting H; = A* — 3A? and H) = A® in the above expression one obtains the

characteristic polynomial of the lattice in fig. 1. The final expression is one of the
expressions in table 2 (0 = 4, n = 3).
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33. ITERATIVE METHOD OF PRUNING ANY BETHE LATTICE

Consider a Bethe lattice of valence ¢ and length n. Let Q; be the quotient
tree generated in the 7th step of pruning and T be the corresponding fragment type.
Let H; be the characteristic polynomial of the type 7; and Hi' be the polynomial
obtained after deleting the root (branch point) in T,. H; and H; can be obtained
recursively. At the nth step of pruning (where n is the length of the lattice), one
obtains a simple tree whose polynomial can be obtained easily, and thus the poly-
nomial of the original lattice we started with can be constructed recursively. For a
lattice of valence o at the first iteration, the type 7; would contain one branch point
and (0 — 1) open vertices. Thus, the characteristic polynomial of Ty, H,, is

Hy=hy=2"= (6= DA72,

[

Hy=2\"1

At the second iteration, H, and H; are expressed in terms of H, and Hj as
Hy= NH{ ™' = (60— DH{H{ 7%,
Hy = H{ ™'

(Note that Hj is the polynomial obtained after deleting the root in T5.) Similarly,
Hj and Hj are expressed in terms of A, and H) as

NHF ™' = (0- DH HY™?,

Hj

Hy=H{ '

Consequently, for any Bethe lattice the expressions at the ith iteration are related
to the ones at the (i — 1)th iteration as

— -1 _ — ! -2
H = NH™ ' - (o— )H,_ H°7?,

H H
1 _
H = H’ 1

i-1

Finally, at the (n — 1)th iteration the charachertistic polynomial of T, _,, H, _,, is

— -1 _ ) -2

Hn—l - )\Hno—z (0 1)Hn—ana—z’
! - -1
Hn-l - Hno—z'
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Since 7 is the length of the lattice, the quotient tree Q, _, at the (n — 1)th iteration
is a simple tree, and thus the characteristic polynomial of the lattice we started with
can be obtained in terms of the determinant of the adjacency matrix of Q,, expressed
in temms of H, . This adjacency matrix is defined as

H _ if i=j and i€Y _
4 = | A if i=j and i¢Y _, ’
Do -EdrY it i) ad i€y,
—qgl."'lf if i#j and €Y, _,
where q,-]f’"l) is the adjacency matrix of Q,_, and Y, is the set of roots (branch

points) in @, _, (there are 0 — 1 vertices in Y, _,). If the open vertex of Q, _,
carries the label 1, then the matrix 4 takes the form:

— A -1 1. -1 =
'
-H | H . 0.............. 0
'
wo| THe O H 0
: 0 H 0
n-1
-H _..0....0....0..... 0 H
ke, n-1 = ] ed

The determinant of 4 can be easily seen to be

ag — ! o1

AHP oH _ H'~'.

The above expression is simply the characteristic polynomial of the lattice we started
with. Note that the expression for H, is obtained recursively, with H; defined in
terms of A and 0. One can easily see that a Bethe lattice of valence o with length n

contains v vertices, where v is given by

o-{(c—- 1" -1}
o—2 '

v=1+

Hence, the leading power in the characteristic polynomial thus obtained would be A”.
The absolute value of the coefficient of \Y ™ ¥ (k being even) gives the number of ways
k/2 disjoining dimers can be placed on a Bethe lattice of valence ¢ and length »n.
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Table 1

. . . *
The characteristic polynomials of Bethe lattices with n = 2

o Characteristic polynomial

2 AN o— 423 + 3

3 A0 — 928 +240° — 20A°

4 AT — 16A1 + 90N — 216A! + 189°

5 A% — 250%% + 240077 — 11200%° + 256008 — 2304\'€
6 A3 — 36A% + 5257 — 40004 + 16 875\°

— 37 5000%7 + 34 375x%°

*o=2isa path. 0 = 4 with n = 2 is shown in fig. 2.

We now illustrate the use of the recursive relations thus obtained for several
Bethe lattices. Consider any Bethe lattice of valence o and n = 2. The characteristic
polynomial of such a lattice can be obtained as a function of . In the first step of
pruning, we obtain the following expressions:

Hi=h =X~ (- 1)A°"2

g
Hy=A"1,

Thus, the characteristic polynomial of this lattice is given by
AHY — 0H{H? ™' = A\ = (0= DA™ 2)7 = o\9 "YW= (- 1)A°™ %)L,
The above expression, on simplification, yields
A - g+ 1) (A2 - 20+ 1),

Thus, an analytical expression was obtained for the characteristic polynomial of a
Bethe lattice of any valence o and n = 2. In table 1, we show the characteristic poly-
nomial of a Bethe lattice with 0 = 3,4, 5 and 6 and n = 2.

Next, we consider Bethe lattices with valence ¢ and #n = 3. The analytical
expression for this case is much more complicated, as one can expect. In the first
iteration, H; and H; are the same as in the earlier example. The expressions for H,
and H, are:
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Table 2

The characteristic polynomials of Bethe lattices with n = 3 *

g Characteristic polynomial

2 AT —6A% + 10A° — 4

3 A22 - 21A%° + 180AM® — B16A' + 21120
— 31200 +2432)1° — 768A°

4 ASP — 52251 +12242% —~ 17 280"

+163 350A% — 1 092 528A*% +5 312 700\
~ 19 123 1282% +50 709 9692*7

—98 021 340A% + 134 238 0607

- 123294 312)% + 68 024 448\*°

—17 006 112A*"

*o =4 with n = 3 is shown in fig. 1.

Hy=XH! ' = (6— D)H{HI™?
- )\. ()\0__ (U“‘ 1))\0*-2)0’—-1 — }\0-—1 . ()\0_ (O"‘ 1)}\0-2)0"2’
Hy= (= (o0— DA~y L,

The characteristic polynomial of the lattice is given by
ANHY — oH, HY ™ '.

In the above expression, one can substitute the appropriate expressions for A, and
H; . This, on simplification, results in

AL 2= 04+ 1)7 T2 (A2 - 20+2)° 70 - (A - 3002 4202 + 0% - o).

In table 2, we show the resulting expressions for ¢ = 3 and 4. In table 3, we show the
expression obtained for 0 = 5 and n = 3. As one can see from these tables, the co-
efficients of terms with odd power vanish in the polynomials containing even terms
and vice versa. This behavior is expected for Bethe lattices. The coefficients rise
exponentially and then fall in value. For Bethe lattices, the coefficients start to vanish
after a particular term, indicating that the lattice can not be covered by more than a
certain number of disjoining dimers for Bethe lattices. It can be shown that the maxi-
mum number of disjoint dimers that can be placed on any Bethe lattice of valence o
and length » is given by
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Table 3

The characteristic polynomials of a Bethe lattice with o =5and n =3

Term Coefficient

}\106 1

Ao - 105

Alo? 5200

Aloe — 161600

A8 3 536 640

A%S - 57978 880

A% 739 307 520

A2 —~ 7514 603 520
N 61892 526 080

A88 ~ 417 575 075 840
A%6 2323 255394 304
234 — 10693902 336 000
A2 40729 795 624 960
AB0 — 127977 274 736 640
AT 329 618 607 308 800
A77 — 688 565935 669 248
A™ 1147 915909 201 920
A2 ~ 1490 546 925 240 320
A7® 1452042543 431 680
A58 — 997 806 802 206 720
AS¢ 431008 558 088 192
AS# - 87960930222 080

(- D"- (- 1)

1+o
(c—12-1

o (o= 1" DI(®> - 1)

It can be easily seen that the coefficient of A¥~ 2 (where v is the number of vertices in
the Bethe lattice) is always v — 1, since this gives the number of ways of covering this
lattice with one dimer and hence should equal the number of bonds. Further, the signs
of alternant terms change, which is in conformity with the behavior of the coefficients
of characteristic polynomials of trees. Note that it is impossible to cover the entire
lattice with dimers, since the constant coefficient of the characteristic polynomial of
a Bethe lattice is always zero. Thus, the Pfaffian of the Bethe lattice is always zero.

if nis odd

if niseven.

The Pfaffian of a lattice is defined in Montroll [1].
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Wz W2

Q T

Fig. 4. A non-isotropic Bethe lattice.
@ and T are the quotient graph and the
fragment resulting from tree pruning.
(Note that the weights w, and w, need
not be equal.)

The tree pruning method described earlier is also applicable to weighted or
non-isotropic lattices. For example, consider the weighted lattice graph shown in
fig. 4. The weights w, and w, need not be equal (non-isotropic lattice). In this
figure, we also show the quotient tree and the fragments which result in the process
of pruning. The characteristic polynomial of the fragment (in the box) is given by

hy = 2 = 22wl .
The characteristic polynomial of the same fragment with the root deleted is given by
hy = \2.

The characteristic polynomial of the quotient tree obtained using the tree pruning
algorithm is given by

3 _ 2w B2
Ahy — 3w hihy.

When one substitutes the expressions for 43 and k3 for the above weighted lattice
one obtains the characteristic polynomial of the lattice as

N0 — )8 (6w§ +3w,) + 1228 (wg +w, wg) -8 (8wg +12w, wg),

The above example illustrates how one could obtain generating functions for the
lattice statistics of non-isotropic lattices.
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